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Introduction

This paper presents an algorithm for computing steady-state probabili-
ties and mean queue lengths and delay times for M/M/c queues with two priority
classes. Cobham [2] has computed mean delay times for multipriority M/M/c
queues with homogeneous service rates. Heyman [3] pointed out the need to
compute mean delay times where service rates for different priority classes
are unequal. The algorithm presented below computes expectations for a
system with two priority classes having heterogeneous rates; in addition,
it can compute steady state probabilities for individual states. However
it is doubtful whether this algorithm could be modified to a practical
algorithm for systems involving more than two priority classes. The
preemptive case is simpler than the nonpreemptive case; an algorithm for

it can be developed using ideas presented in this paper.

The general approach to this analysis is a computational method devel-
oped by Neuts [8]. The simpler problem of single-server two priority
Markovian queues was solved by Miller [5]. The approach consists of parti-
tioning the full state space into blocks and discovering special structure
of the invariant probability vector in relation to these blocks. It is

assumed that the reader is familiar with [5,6,7,8].

In addition to solving the problem posed by Heyman, this algorithmic
approach is of interest because it explores a new and complicated application
of several ideas from the field of computational probability: quasi birth

and death processes, M/G/l paradigms, and matrix-geometric invariant vectors.

Using single precision arithmetic the algorithm appears to work well
for low and moderate utilization factors, but there is some deterioration
in the calculations for Ligh utilization. This application demonstrates
the need for developing good crror analyses for this type of computation.

This application may be a good vehicle for developing some such analyses.




State Space and Transition Matrices

1 ’ Consider an M/M/c two priority nonpreemptive queueing system with

arrival rates Al and )\2 and service rates pl and 112 . The state

space can be described as follows. Let X ik be the state with i
y.]>

first priority customers waiting, j second priority customers waiting,
k first priority customers in service and c-k second priority customers

in service, i, j >0, 0 <k <c . From them, define the blocks

H = {x 0 <k < e}

i’j i’j’k[ - - ’ i’j io ’

Let xm n be the state with m customers in service of which n are
2

first priority customers and no customers are waiting in queue,

f 0<n< m< c. Then define the bldocks
H = {x |[0<n<m}, O<m<c,.
| m m,n' — - - -

! (Note that Hc = HO 0" ) Thus, the state space is
’

c-1
‘ = U (Ol S U
S (m=o Hm) (i_>_o j>o Hi,j)

Now consider the probabilistic transition rates for the non-
preemptive M/M/c two priority system on this state space. The

matrices of transition rates between the blocks defined above can be
denoted as

K+ H—eH ., 0< i< c-1 |
Ji: H—-OHi__l s 1_<_ i< ¢
4
1 Ll: Hiﬁ‘nii’l,j’ i,j>o0 |
i
. ;>
? LZ. H:I.:‘j-.ni,j+1’ i,jZ0
'* M BTty 121, 320 i
’
>
MZ HO,‘_’F.HO,j-l’ i 1. i
|
-2 - |
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' All transitions correspond to arrivals and departures thus there are no
' . transitions within individual blocks. Therefore the submatrices of the
transition rate matrix corresponding to transitions within a block are

all diagonal:
-D.: H, —» H, , 0<ic<eg
i i i - -

=D : H, —+ H P i">0
c i,j i,j 32

1ne transition structure is depicted in Figure 1.

The matrix Ki is (i+l) x (i+2) dimensional; (Ki)j K
bl

| A, for k= jH, A, for k=3, and 0 otherwise (1 <j < i+l,

equals

is (i+l) x i dimensional;

| 1< k<i+2) ., The matrix J
< * J3 SIIN"

equals (i—j+l)u2 for k=3, (j—l)ul for k= j~1, and 0 otherwise

! (1 £ j< 141, 1 <k <1i) . The matrices L1 , L2 , Ml , and M2

| ctl) x (ctl) d i : : 3
( ) (c+l) dimensional; Ll equals kll ; L2 equals AZI 3 (Ml)j,k

are

equals (c-j+l)u2 for k = j+1 , (j—l)u1 for k = j, and 0 otherwise
(L<gj<etl, 1<k <cHl) ; (MZ)j K equals (c—j+l)u2 for k=13,
bl
(j—l)ul for k= j-1, and 0 otherwise (1 <j<efl , 1<k <cHl)
The matrix D, is (i+l) x (i+l) dimemnsional; (D.),
i i“j,k
(j-l)ul + (i—j+1)u2 + A for k=3j and O otherwise (1 <j <itl,

equals

1<k<iHl) .

The blocks Hm s 0<m<ec-1, and Hi , 1,j > 0, can be
. Z

3

combined into super blocks:

N SN

Lot ke o S




Figure 1.

Partitioned state space (blocks) and transition

scheme.
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The states in 1_l are exactly those corresponding to the existence of

idle servers. The states in I , i > 0 , are those with exactlv i
i -
first priority customers awaiting service. The matrices of transition

rates between and within these blocks can be denoted as

B—l, _ l: I_l———* I—l

B_1,0° i1

BO,—l: I0 — I-l

. T —

BO,O' 0 IO

A I Ligg» 1290
A I, —al , 1i>1

1 i i -

[\2 L —p I -1 i>1

These transitions are depicted in Figure 2. The above matrices of
transition rates can each be partitioned into submatrices corresponding

to transitions between the subblocks of Ii » 1> -1 These sub-

matrices were defined earlier. The number of submatrices in one of these

matrices varies according to the number of blocks in the corresponding

superblocks. (B~l,-l)j,k equals Kj-l for k= j+1 , - Dj—l for
k=13, Jj—l for k = j-1 , and 0 otherwise (1 < j <c, 1 <k < c)
(B-l,O)j,k equals Kc—l for (j,k) = (l,c) and 0 otherwise

(1 <j<o,1<k<ec). (BO,—l)j,k equals J_ for (j,k) = (c,1) and
0 otherwise (1 < j<c, 1<k<®, (BO,O)j,k equals L, for
k=3j#l, -D  for k=3, M, for k=j-1, and 0 otherwise
(ITsi<o, k<. (Ao)j,k equals L, for k=3 and 0
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Figure 2. Partitioned state space (superblocks) and

transition scheme.
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otherwise (1 < j <w, 1 < k < ®) . (Al)j " equals L7 for k = j+1 ,
- - s 2

- Dc for k=3 , and O otherwise (1< j <o, 1 <k<®)

equals M1 for k=3 and O otherwise (1 < j <, 1<k<®.

Using this block structure and notation, the transition rate matrix for

the M/M/c two-priority nonpreemptive queueing system is

By B o 0 0 0
By, -1 By o A, 0 0

0 A, A, A, O

s T 0 0 A A A
2 1 0

Invariant Measures

The process described above is a quasi birth and death process

[4,8]. Consequently its steady-state probability vector is of matrix-
geometric form {4,8]:

2 3
( 1—T"‘l 2 EO ’ ’EOR b -O 9 20' ’ ...)

(1)




The Matrix-Geometric Rate Matrix

The rate matrix, R , of the quasi birth and death process is the
minimal solution of

2
by + = . 2
Ay + RA L 0 (2)
Furthermore, from the block structure of the process and the interpretation

of the rate matrix {5,7,8], R must have the structure

R, R, R, R,
Ry Ry R, Ry
0 Ry Ry R,

R = 0 0 R, Ry (3
0 0 0 Ry

where each submatrix has dimension (c+1) X (c+1). Substituting (3) into ]

(2) gives a system of equations:

L. - RD. + R ZM = 0 %)

e b e -

R, ,.L,-RD + IR, R, .M = 0 (3)
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These can be solved numerically as follows. First consider (4)., Let

™ 1 ™ 1 ~ 1
Ll = Dc Ll ’ M1 - Dc Ml ’ R0 - Dc RODC ;
then (4) becomes
n N N 2V
Ry = L * Ry My (6)

which can be solved using the usual iterative approach useiul for matrix-

geometric rate matrices {8]: Let

N
Sg = 0, S, = Li+5S. M, ..., 8, =L 45 M, ...

4V
Then Si ’ RO , termwise. The usual procedure is to continue iterating

until the maximum termwise difference between successive iterates is

smaller than some € , e.g. € = 10--7 .

Now consider (5); it is equivalent to

N N i-lvnan A N NN
= + + i > 7
Ry Ry Ly j__z_l RjRi_le (RyR; RiRO) Mo, 121 (7
v a,
For i =1, R1 can be found by using the above solution for Ro and

then using a similar iterative procedure which will converge monotonically
n

to Rl . For i > 1, continue recursively, wusing the solutions for
N
Rj , i< 1i , from previous steps and using the iterative procedure to
’ N
get R, . The desired Ri's are
RS §
R, = DRD , i>0.
i cie -
Thus the rate matrix R can be computed up to any level of truncation.

In this study the computation of the Ri's was truncated when the

iterative procedure stopped in the first iteration, in which case the

value was set to O .

e iae
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There is an intermal accuracy check which can be used in the above

', : numerical computation. Let

Vg ® A 1
R = I R ;
‘ 1=0 1 |
From (6) and (7) it follows that
’\:* ") '\,* n ’\,* 2 n,
R* = L, +R¥L, + (R%) LI (8)
T
The usual iterative method can be used to solve (8) for R . This matrix

v

can then be compared to the sum of the individual solutions Ri , 1>0.

This check was performed and virtually no error detected.

B de s

The M/G/1 Paradigm

According to the theory of matrix-geometric invariant vectors, if

0 = TP 9)

then

T o= (g o Tps Tpos o)

where Ei corresponds to the vector on the super block Ii , 1> -1
and

Tin I
This can be used with (9) to temporarily reduce the problem of solving

(9) to consideration of

@ » = (1, 1 Pr_ur

4
.
i
e
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where

Bi,a1 340

By,-1 By,0 T R4y

is a matrix with negative diagonal entries, nonnegative off-diagona!l

entries, and row sums equal to O ; thus it can be thought of as a

transition rate matrix for a Markov process on I_lleo . Letting
= = - ~+ = h = R i
C0 M2 s Cl DC ROM s C2 L2 + lel , Ci Ri—lMl » 1 >3,
gives
C2 C3 C4 .
n
¢ C2 C3 .
C0 Cl C2 .
B + RA, =
c,0 2
0 Co Cl .

Note that this has the M/G/1l paradigm structure discussed by Lucantoni

and Neuts [4]. Following their approach, it will be easier to work with
an embedded Markov chain. Define the submatrices of transition probabili-
ties for this chain as

q’ -—
Ky = DKy 1 i1 22z
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This is a Markov chain on

1. Ul _c-1 o H
-1 U Hy v U
m=0 j=

Each transition of this chain corresponds to a transition of the original
process. Each transition of the original process ocut of a state in
\

I~1lJIO is also a transition for this chain. If the process made a

transition from IO to Il , then the chain will make a transition

from IO to I0 , the target state being the first return state in

IO . Thus the chain can make transitions from states of IO into them-

selves.

The following analysis uses ideas from Lucantoni and Neuts [4].
n

Consider the Markov chain PI_llJIO on this state space. Let G be
the (c+l) x (c+1l) matrix of hitting probabilities of states of HO,j
starting at HO,j+l s 320. G must satisfy

¢ - 3 Ev c

and can be found iteratively starting with an initial O matrix; see

[4]. Let V be the first passage probabilities of hitting states in

i f i H b 3 th
HO,j+l starting from states in 0,3 with HO,j a taboo set; en
o A,
v = 1 c g2
AY)
v=2

Let W be the first passage probabilities of hitting states in H

0,j+1
with HO,j a taboo set starting from states in HO,j+l 3 then
oo ", -
w =z c ¢t
V
v=1
- 12 -

i
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~
Finally, let S1 be the matrix whose entries are the expected number oi
visits to states in H, ., . from states in H_, . before returning to
0,j+1 Q,]

HO,j s then

n, Ls o]

Y -1
S, = VW o= V(I-W)
v=0
n

Using the above relationships Sl can be computed.

Probabilities of Idle Servers

Now consider an invariant vector for the Markov chain with state
n,

. . - .
space I_llJIO and the Markov transition matrix [—1\J]0

(z_{ s 29) = (2_; > 29 P (10)

Partition the vector over the blocks Hm » 0<m<c-1, and

(zy 2 = 5 Zy10 > 23,610 %0,0° 6,1 %0,2°

From the structure of this process and an important property of taboo

probabiiities (Theorem 1 of [5], or see Chung [1], p. 53), it follows
that
"

20,1 ~ %0,0 51

This result applied to (10) gives

o
~

(z_)» 2,00 = (2 20,0




The dimension of the above square matrix is (c+1) (c+2)/2. For a

moderate number of servers ¢ , the invariant vector (z 1 % 0)
- b VPR

can be computed using existing numerical techniques. The corresponding

invariant vector for the process has component vectors

0 f i i c-1

Yo,0 = Zo,0 “c

In order to get a normalizing constant to convert this into the invariant

probabilities, recall that the proportion of idle servers must equal
b }‘1 AZ

1-06= 1-{— + o
. ceHy o

where p is the utilization factor. Thus, let

Then the invariant probabilities on IﬁlLIH can be computed:

0,0

[}

Tog T Y, UME, 0<icel,

0,0 " Yo,0 (1-p) /€ .

Probabilities of States with Customers Waiting

Now it is possible to build the state space back up, computing the
invariant probabilities of additional states. In order to compute the

invariant probability vector (Eo,l » To,2 * Tp,3 ° ...) over

H

TCs

0,3j

3
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it is necessary to depart from the approach of Lucantoni and Neuts (4

Y n

because CO is singular. Instead, consider §, , the matrix whose

entries are the expected number of visits to states in HO j+i from
L

states in HO,j before hitting HO,k , k < j+i
4" 00 V] . _
s, = I Vb ewt .
boov=itl

This follows by a simple sample path argument similar to the derivation

"N
of S] earlier. The invariant vector
(z_1 > 20,02 Z0,1 7 Z0,2° *°*)
for the Markov chain
"N
P
1_,UI,
must satisfy
i n
= , i >0 .
%0,1+1 jfo 20, Si+1-3 * T2

This is a special case of the fundamental result for taboo probabilities
(Theorem 1 of [5] or see Chung [1], p.53). The invariant probabilities
for the process must therefore satisfy

N

i 1
= z bl D S D™ s 1 >0,

m h .
<0,1i+1 j=o 03 e Ti¥l-jc

These can be computed recursively, starting from T 0 which has already

b ]

been computed.
Finally ni 0 i>1, j >0, can be computed using the
-1, z Z

matrix-geometric structure:

Ti+1,5 ~




il

Thus one can compute the invariant probability vector to any level of

truncation 0 < i <1, 0< j<J.,

Sums and Means

By summing the above probabilities it is possible to get a sepurate
calculation of the probability of no idle servers (this can be used as a
consistency check on the numerical calculation) and the mean number of
each type of customer awaiting service (then Little's formula can be

applied to compute mean delay for each class).

x© o |
T @, et =1 (1-r® " et (1)
1i,3% i Z
i,j=0
4= IioZom et o= TRERYH TS (i2)
i=1 =0 ~t*d
- ® bl t 40 (XS 0 t
Qo= 3 T om o.e = xEumetasty-sty me (13)
2 . _n —is3- 2 - 2
j=1 1i=0
where gt is a (ec+l) dimensional column vector consisting of all 1's ,
and
- _o(0)y-1
I To,0 (IS
oo A"}
s(o) = D r S Dl
c k c
=1
o ~N -
s(l) = D I k sknl
C k=l C

Computational LCxperience

The algorithm described above has been programmed in single-precision
Fortran and run on GWU's IBM370/3031. Cases with c¢=5 were run. Seventy
five different cases were run corresponding to all combinations of p = .2,
I, B, )«l//‘\2 = .25, .5, 1,2,4, and pl/pz = ,25, .5, 1,2,4. Execution
times for computing state probabilities and expectations varied from approx-
imately 10 seconds per case with ¢ = .2 to approximately 60 seconds per case

with . = .8

- 16 =




X

i) independent calculations of R™ and £ R, were compared; 1ii) .
P i

i=0

row sums of G were compared with unity: iii) the row sums of
“ ", NooA
N (:l + S] CO were compared with unity; iv) the total probability

¢

computed was compared to unity; and v) moments were computed dircctiv
from the state probabilities and compared with values computed from
equations (11) and (12). These consistency checks generally agreed to

5 or more digits.

The mean delay for cases with homogeneous service rates were
calculated using Cobham's [2] approach. The values agreed with those
computed by the above algorithm except in the case p = .8 where a

discrepancy appeared in the fourth digit. This case illustrates the

need [or a more complete error analysis in this type of calculation.
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Relative Mean Delays

(5 servers, .2 utilization)

S
.25 .50 1.0 2.0
.0003698 .0004961 .0006405 .00007681
.25 .001947 .002613 .003333 .003922
.0004947 .0005728 .0006720 .0007704
.50 .001251 .001453 .001705 .001943
, .0907980 .0008211 . 0008514 .000884 )
Mi/M2 1.0 .0909978 .001026 .001064 .001105
.001454 .001394 .0U1308 .001209
2.0 .000910a .0008738 .0005214 0007597
.002846 .002665 .002384 .0020290
4.0  .0008955 .0008431 .0007599 .0006490
Table 1. Values of ulwl and u2w2 for ¢=5, o =
and AI/AZ = .25, .5,1, 2, 4, and u]/u2

.25, .5, 1, 2, 4.

T-440

4.

.0N08479
. 004441

.0008510
002134

0009123
L0014

001118
000702t

.201650
L0005315

.2,




Relative Mean Delays

Values of

.02195
.2136

.02286
.09859

.03128
.06257

.05224
.05192

.09835
. 04964

4"

(5 servers, .5 utilization)

.03082
. 2854

.02922
.1258

.03476
.06953

.05226
.05172

.09364
.04759

and

2.0

.03892
. 3425

.03636
. 1540

.03911
.07822

.05226
.05168

.08669
.04442

and u2W2 for c¢=5 ., p = .

“1’“2

.G4414
.3782

.04250
L1765

.04 346
.08690

.05223
05165

.07809
.04030




O it it

ul/u2

Relative Mean Delays

(5 servers, .8 uvtilization)

Mxy
25 =52 1.0 2.0
L2113
.25 3.9591
.1159 L1726 2487
.50 1.3541 1.8911 2.6118
.1319 .1511 .1846 2405
1.0 .6596 .7553 .9218 1.1956
. 2662 .2663 .2976
2.0 .5983 .6369 L6880
.4589
4.0 .5520

Table 3. Values of ulwl and u2w2 for e¢=5, p =

A1/AZ = ,25, .5, 12, 4, and 'ul/u2 = .25

S, t, 2, 4.

NS TN

T-440

-~
e
' -
b=

. 3052
1.5113
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